On Smallest Compactification for Convergence Spaces
نویسندگان
چکیده
منابع مشابه
On Smallest Compactification for Convergence Spaces
In this note we obtain necessary and sufficient conditions for a convergence space to have a smallest Hausdorff compactification and to have a smallest regular compactification. Introduction. A Hausdorff convergence space as defined in [1] always has a Stone-Cech compactification which can be obtained by a slight modification of the result in [3]. But in general this need not be the largest Hau...
متن کاملNagata Compactification for Algebraic Spaces
We prove the Nagata compactification theorem for any separated map of finite type between quasi-compact and quasi-separated algebraic spaces, generalizing earlier results of Raoult. Along the way we also prove (and use) absolute noetherian approximation for such algebraic spaces, generalizing earlier results in the case of schemes. To the memory of Masayoshi Nagata
متن کاملA Stone-cech Compactification for Limit Spaces
O. Wyler [Notices Amer. Math. Soc. 15 (1968), 169. Abstract #653-306.] has given a Stone-Cech compactification for limit spaces. However, his is not necessarily an embedding. Here, it is shown that any Hausdorff limit space (X, t) can be embedded as a dense subspace of a compact, Hausdorff, limit space (Xi, ri) with the following property: any continuous function from (X, t) into a compact, Hau...
متن کاملOn statistical type convergence in uniform spaces
The concept of ${mathscr{F}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{F}}$. Its equivalence to the concept of ${mathscr{F}}$-convergence in uniform spaces is proved. This convergence generalizes many kinds of convergence, including the well-known statistical convergence.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1974
ISSN: 0002-9939
DOI: 10.2307/2039261